Time and datetime modules

An introduction to common
Python modules

In this video, we will discuss the time and datetime modules.

The time module
time
Get time since 1sttime clock statement (seconds):
time.clock() Useful for timing scripts

Pause script for x number of seconds:
time.sleep(x)

Get current time (in seconds since epoch):
time.time() i.e. 1316622882.9530001

Get local time (in format below)...
time.ctime() i.e. “Wed Jul 16 14:33:02 2011”

Format time (t is seconds since epoch)...
time.ctime(t) i.e. “Fri Jul 29 12:25:152011”

The time module includes tools for clocking a script’s processing time, getting
current times, and formatting times.

The time module’s clock tool is used to check the time that it takes a script to
complete a given task —this is a very useful tool for optimizing a script’s
efficiency, as we’ll see in an example later.

The sleep tool will pause a script for a specified number of seconds. Making
the script sleep can be useful when it must wait for a condition to occur before
performing a certain task.

The time tool will get the current time in seconds since a computer epoch.
This time can be converted to a more meaningful format by the ctime or
strftime tools.

The ctime tool can get the local time in a standard time format

And it can also convert a time since epoch (e.g. from the time tool) into a
standard time format.

The time module continued

Time objects can be custom formatted.

Get local time object...

time.localtime(t) t is the seconds since
_) — epoch. Current time
Get UTC time object... used if t is omitted.

time.gmtime(t)

—

Create custom time format...

local Time = time.localtime(t)

time.strftime(“%a, %d %b %Y %H:%M:%S”, local Time)
L J

if omitted, current
local time used

Y
“Thu, 21 Jul 2011 15:14:07"

If a time format is required that is different from the output of the ctime, then
custom time formats can be created.

The first step in creating a custom time format is to use the localtime or
gmtime tools to convert a time since epoch to a time object. The gmtime tool
converts the time to “Coordinated Universal Time”. Both the localtime and
gmtime tools will return the current time if no parameter is specified.

The time object can be input as a parameter in the strftime tool which allows
the time format to be customized. The strftime tool allows a format string to be
specified that determines the format of the output time.

An example result is shown for the format string used here.

The time module — format codes

time.strftime(“%a, %d %b %Y %H:%M:%S”, localTime)

sa Locale's abbreviated weekday name 8U Week number of the year (Sunday as the first day of the
$A Locale's full weekday name week) as a decimal number [00,53]. All days in a new
$b Locale's abbreviated month name ﬁaerkp(r)ecedmg the first Sunday are considered to be in

88 Locale's full month name

tw Weekday as a decimal number [0{Sunday) 6]
$c Locale's appropriate date and time representation

sw Week number of the year (Monday as the first day of the

td__ Day of the month as a decimal number [01.31] week) as a decimal number [00,53]. All days in a new
84 Hour (24-hour clock) as a decimal number [00,23] year preceding the first Monday are considered to be in
$I Hour (12-hour clock) as a decimal number [01,12) week 0

83 Day of the year as a decimal number [001,366] $x Locale's appropriate date representation

$m Month as a decimal number [01,12] $x Locale's appropriate time representation

$M Minute as a decimal number [00,59] 8y Year without century as a decimal number [00,99]

sp Locale's equivalent of either AM or PM $¥ Year with century as a decimal number

83 Second as a decimal number [00,61] $2 Time zone name (no characters if no time zone exists)

%8 Aliteral 3 character

Find format codes in Python Docs > Global Module Index >
Time > strftime @

This slide shows the available options for building a custom time format. Any
combination of time elements may be used in the format string and spaces,
commas, colons, or other punctuation may be used to separate the elements.

time, os.path, os

picTime = os.path.getctime(picFile)

timeObj = time.localtime(picTime)

timeStr)

os.rename(picFile, newName)

Example script: time module

picFile = r*“C:\Pictures\Everglades 001.jpg”

Append image
modification time
to file name

timeStr = time.strftime(“%d %b %Y™, timeOby)

newName = “%s - %s.jpg” % (os.path.splitext(picFile)[0],

This example will show how to rename a digital photo so that the name

includes the time the file was created.

The first step is to get the file creation time using os.path’s getctime tool.

The creation time is then input into the time module’s localtime tool to create

atime object.

The time object is then input into the strftime tool to create an output string

with the desired time format.

The output string is then inserted into the output file name.

Finally, the os module’s rename tool is used to rename the file.

Example script: time module
time

=P sTime = time.clock()

Measuring script
processing time.

total = 0
x i range(1000): print statements
low...
total += x are very slow
total

=P ¢ Time = time.clock()
elapsedT = eTime-sTime

“Run-time is %s seconds” % (elapsedT)

In this example, the time module’s clock tool is used to time how long the
script takes to run.

The clock tool is used at the beginning of the script to get the start time.

It is used again at the end of the script to get the end time. The elapsed time is
then calculated as the end time minus the start time.

If you run this script, you will find that it runs quite slowly. However, if you
remove the print statement before running it, then it will run very fast. Print
statements can slow a script significantly if printing occurs too often. If you
need to include a print statement within a loop, then you should not have it
execute in each iteration.

The datetime module — datetime object
datetime - dT
Create datetime or date object...
dT.date(year, month, day)
dT.datetime(year, month, day, hr, min, sec, microsec)
Get current local datetime or date object...
dT.date.today() dT.datetime.today()

Get datetime (or date) object from timestamp...
dT.datetime.fromtimestamp(t) t = seconds since epoch

Get info from datetime or date objects...
>>> dateT1 = dT.datetime.today() i
atetime
dateT1.day dateT1.month dateT]1.year objects only

{dateTl.hour dateT1.minute dateT1.second]*/ 7

The uses for the datetime module include comparing dates and calculating
the elapsed time between two dates. Date or datetime objects need to be
created in order to compare dates or calculate elapsed time between dates.
The date object includes only the year, month, and day.

The datetime object includes the date as well as the time of day.

The date.today tool creates a date object corresponding to the current date

The datetime.today tool creates a datetime object corresponding to the
current date and time.

The datetime.fromtimestamp tool can create a datetime object from a “time
since epoch”.

Date objects give access to the day, month, and year to be extracted.
Datetime objects give access to the day, month, year as well as the hour,
minute, and second.

The datetime object continued

Compare datetimes or dates...
Can only compare

dateT1 < dateT2 objects of same type
dateTimel < dateTime2 (i.e. cannot compare

) datetime to date).
Subtract datetimes or dates...

timedelta = dateTimel — dateTime2

Add or subtract timedelta from datetime or date...

dateTime2 = dateTimel + deltaT
dateTime2 = dateTimel - deltaT

- where deltaT is a timedelta object

Date or datetime objects can only work with other objects of the same type —
date objects work with date objects; datetime objects work with datetime
objects.

Date or datetime objects can be compared...
Or subtracted. Subtracting the objects creates a time delta object.

Time delta objects can be added to or subtracted from date or datetime
objects.

The datetime module — timedelta object

datetime - dT

Can create timedelta object explicitly...

deltaT = dT.timedelta (weeks = 4, days = 6,
hours = 5, minutes = 34, seconds=800)

Also created by subtracting date or datetimes...
deltaT = dateTimel — dateTime2

Get days or seconds from a timedelta object...
deltaT.days deltaT.seconds

Time delta objects can be created explicitly using the timedelta tool.

They can also be created by subtracting date or datetime objects.

The days and seconds can be retrieved from a timedelta object.

Example script: datetime module

datetime - dT Measure time elapsed
T1="4-23-1991” since T1 date
T1=TLsplit(“-") —> [4’,°23",°1991"]
yr =int(TI1[2]) —> 1991 Break for class
month = int(T1[0]) —> 4 exercises
— 10 minutes

day = int(T1[1]) ——> 23

T1 date = dT.date(yr, month, day) —> datetime.date(1991,4,23)
current_date = dT.date.today() —> datetime.date(2011,10,5)
elapsedT = current date - T1 date = datetime.timedelta(7470)

elapsedT.days —> 7470
10

Let’s look at an example using the datetime module which measures the
amount of time that has passed between a past date and today.

A date string, for the past date, is split to extract the year, month, and day.

A date object is created using the components extracted from the original date
string in the date tool.

A date object for today’s date is obtained using the date.today tool.

The date object for the past date is subtracted from the date object for today’s
date.

The days is then extracted from the timedelta object.

10

